Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(13)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1911366

ABSTRACT

The COVID-19 epidemic has emerged as one of the biggest challenges, and the world is focused on preventing and controlling COVID-19. Although there is still insufficient understanding of how environmental conditions may impact the COVID-19 pandemic, airborne transmission is regarded as an important environmental factor that influences the spread of COVID-19. The natural ventilation potential (NVP) is critical for airborne infection control in the micro-built environment, where infectious and susceptible people share air spaces. Taking Wuhan as the research area, we evaluated the NVP in residential areas to combat COVID-19 during the outbreak. We determined four fundamental residential area layouts (point layout, parallel layout, center-around layout, and mixed layout) based on the semantic similarity model for point of interest (POI) picking. Our analyses indicated that the center-around and point layout had a higher NVP, while the mixed and parallel layouts had a lower NVP in winter and spring. Further analysis showed that the proportion of the worst NVP has been rising, while the proportion of the poor NVP remains very high in Wuhan. This study suggested the need to efficiently improve the residential area layout in Wuhan for better urban ventilation to combat COVID-19 without losing other benefits.


Subject(s)
COVID-19 , Pandemics , Built Environment , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Humans , Pandemics/prevention & control , SARS-CoV-2
2.
Cities ; 126: 103696, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1783240

ABSTRACT

Urban residential districts (URDs) are a major element in the formation of cities that are essential for urban planning. Regarding the COVID-19 virus, which remains variable in aerosols for several hours, airborne transmission tends to occur in areas of poor ventilation and high occupant density. Thus, ventilation capacity is an important factor influencing airborne transmission in URDs, which should be evaluated as part of efforts to fight COVID-19 and guide healthy city planning and implementation. Here, we develop and test systematic methods to map URDs in a typical city in northern China and quantify their ventilation capacity using very high-resolution remote sensing images. Four fundamental spatial forms of URD are identified in the research area: the point-group form, parallel form, enclosed form, and hybrid form. Our analyses indicate that the integrated ventilation capacities for well-designed URDs are nearly twice those of poorly designed URDs. Large variations in ventilation capacity are also observed within URDs, with up to 13.42 times difference between the buildings. Therefore, very high-resolution remote sensing data are fundamental for extracting building height and generating precise spatial forms, which can improve the micro-scale URD ventilation planning for the prevention of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL